Process/Equipment Co-Simulation on the Syngas Chemical Looping Process

Liang Zeng
Zhao Yu
Dr. Liang-Shih Fan (PI)

Contents

- Introduction
- Thermodynamic Analysis on Reducer
- Equilibrium Based Reactor Modeling
- Experimental Study
- Primary Process Simulation
- Co-simulation Project Progress

Introduction

Syngas Chemical Looping Process

Chemical Looping Reactor System

- ightharpoonupReducer $CO/H_2O+Fe_2O_3 \rightarrow CO_2/H_2O+FeO_x$
- \triangleright Oxidizer $H_2O+FeO_x \rightarrow H_2+Fe_3O_4$ (x<1.33)
- \succ Combustor Fe₃O₄+O₂ → Fe₂O₃

Reactor Type

- Fluidized bed reactor design
- Moving bed reactor design (OSU)

Thermodynamic Restrictions for Fluidized Bed Reducer under 850 C

Operating Equation for Moving Bed Reducer

Fixed solid molar flowrate n_{Fe},

Oxygen content for solid
$$y = \frac{3n_{Fe_2O_3} + 4n_{Fe_3O_4} + n_{FeO}}{n_{Fe}}$$

Fixed gas molar flowrate $n_{H2} + n_{H2O}$,

Oxygen content for gas

$$x = \frac{n_{H_2O}}{n_{H_2} + n_{H_2O}}$$

Oxygen Balance
$$n_{Fe}(y_{z+\Delta z}-y_z)=(n_{H_2}+n_{H_2O})(x_{z+\Delta z}-x_z)$$

$$\Delta z \to 0 \Rightarrow dy/dx=(n_{H_2}+n_{H_2O})/n_{Fe}$$

It is a linear equation when feeding ratio is fixed

Operating Lines in a Countercurrent Moving Bed Reactor under 850°C

The operating line is straight when feeding ratio is fixed: solid line represents full gas conversion with minimum solid requirements, dash line reaches full solid conversion with minimum gas requirements

Equilibrium Reactor Modeling

ASPEN Plus® Model Setup

Name of the Parameter	Parameter Setting
Reactor Module	RGIBBS
Physical and Thermodynamic Databanks	COMBUST, INORGANIC, SOLIDS and PURE
Stream Class	MIXCISLD
Property Method (for Gas and Liquid)	PR-BM
Calculation Algorithm	Sequential Modular (SM)

Physical Property Calibration

Components	FE ₂ O ₃	FE ₃ O ₄	FE	FE _{0.947} O
Temperature units	°C	°C	°C	°C
Property units	J/kmol	J/kmol	J/kmol	J/kmol
T1	25	576.8500000	25	25.00000000
T2	686.85	1596.850000	626.85	1376.850000
a	-9.28E+08	-9.7072850E+8	3.78E+07	-2.8212753E+8
a'	-9.28E+08	-9.5672850E+8	3.78E+07	-2.81844E+8
b	1.98E+06	5.27383876E+5	-6.54E+05	4.01635664E+5
b'	1.98E+06	5.355839E+05	-6.54E+05	4.029657E+05
С	-2.58E+05	-50171.18100	1.09E+05	-4.878544E+04
c'	1.98E+06	-5.089700E+04	-6.54E+05	-4.860400E+04
d	165.486384	-35.96733770	-214.129205	-4.184000020
е	-0.066806967	-6.0151695E-5	0.084705631	0.0
f	1.17E-05	6.12900216E-9	-1.95E-05	0.0
g	7.66E+09	-4.277784E+10	-4.01E+09	1.40164001E+8
h	-3.76E+11	5.46763727E+9	1.98E+11	0.0

Revised data is consistent with literature and experiments

Fluidized Bed Reducer Modeling

RGibbs reactor model, 850 C, 1 atm Fluidized bed reducer requires a ratio of >3 to fully convert H₂

Moving Bed Reducer Modeling

Multistage equilibrium model to mimic the gas solid countercurrent flow

5-stage Equilibrium Moving Bed Reducer

850 C, 1 atm, M_{Fe2O3} : M_{H2} = 2:3

Conversions vs Molar Flow Rate Ratio in the Moving Bed Reducer

Multistage equilibrium reactor model, 850 C, 1 atm Moving bed reducer requires a ratio of >0.66 to fully convert H₂

SCL Reducer Modeling

Reactor Type (Reducer)	Fluidized Bed	Moving Bed (OSU)
Gas Solid Contacting Pattern	Well-mixed	Countercurrent
Syngas Conversion	100%	100%
Molar Flowrate Ratio Between Solid and Gas	3:1	2:3
Oxygen Carrier Conversion	11.1% (Fe ₃ O ₄)	49.6% (Fe & FeO)
Subsequent Hydrogen Production	No	Yes

Temperature Effect on Moving Bed Reducer Performance

Multistage equilibrium reactor model, CO:H₂=2:1 syngas input, 1 atm

Fates of Sulfur and Mercury

- Sulfur will exit in SO_2 from the top, and start accumulating in solid as $Fe_{0.877}S$ when $H_2S>600$ ppm
- All the mercury will exit in gas phase

Experimental Study

Iron Based Composite particles are completely recyclable for more than 100 cycles

Reducer Modeling Validation

Moving Bed Studies – Reducer Operation

Nearly 100% conversion of syngas achieved

Phase I – Sub Pilot Scale SCL plant

Process Simulation

Common Assumptions

- A 1000 MWt (HHV) Illinois #6 coal input
- Shell Gasifier is considered
- Carbon regulation mandates > 90% carbon captured
- The H₂ coming out of the system is compressed to 30 atm for transportation while the CO₂ is compressed to 150 atm for geological sequestration

Assumptions used are similar to those adopted by Mitretek Systems in their report to USDOE/NETL*.

^{*} Gray D. and Tomlinson G. Hydrogen from Coal. Mitretek Technical Paper. DOE contract No:DE-AM26-99FT40465. (2002)

ASPEN Models for the Key Units

Unit Operation	Aspen Plus® Model	Comments / Specifications
Air Separation Unit	Sep	Energy consumption of the ASU is based on specifications of commercial ASU/compressors load.
Coal Decomposition	Ryield	Virtually decompose coal to various components (Pre-requisite step for gasification modeling)
Coal Gasification	Rgibbs	Thermodynamic modeling of gasification
Quench	Flash2	Phase equilibrium calculation for cooling
WGS	Rstoic or Rgibbs	Simulation of conversion of WGS reaction based on either WGS design specifications or thermodynamics
MDEA	Sep or Radfrac	Simulation of acid gas removal based on design specifications
Burner	Rgibbs or Rstoic	Modeling of H ₂ /syngas combustion step
HRSG	MHeatX	Modeling of heat exchanging among multiple streams
Gas Compressors	Compr or Mcompr	Evaluation of power consumption for gas compression
Heater and Cooler	Heater	Simulation of heat exchange for syngas cooling and preheating
Turbine	Compr	Calculation of power produced from gas turbine and steam turbine

Traditional Coal to Hydrogen Process

Syngas Chemical Looping Process

Comparison between SCL and Traditional Coal to Hydrogen/Electricity Process

	Conventional Max H ₂	Conventional Co-Production	SCL
Coal feed (ton/hr)	132.9	132.9	132.9
Carbon Captured (%)	90	90	100
Hydrogen (ton/hr)	14.20	12.36	14.24
Net Power (MW)	0	38.9	66.2
Efficiency (%HHV)	56.5	52.69	63.12

SCL process can increase the efficiency of State-of-theart coal to hydrogen process by 7 – 10%

Process/Equipment Co-Simulation

Two scales of modeling for prediction

- I Equipment Simulation in SCL System
 - How equipments behave
 - > Fluent

II Process Simulation on SCL Process

- ➤ How the whole process works
- Aspen Plus

Equipment . Plant Modeling

Software	Fluent	Aspen Plus
Scale	Equipment	Entire plant
Resolution	2D/3D	0D/1D
Balance	Distributed mass/heat/momentum balances	Overall mass/heat balances
Advantages	Many physical submodels	Extensive physical properties database
Use	Equipment optimization, flow field visualization	Process design, overall efficiency
Method	Computational Fluid Dynamics (CFD)	Steady-State Process Simulation

Equipment Simulation in Fluent

Overall Project Timeline

Conclusions

- The SCL process is an effective way to produce hydrogen from coal with CO₂ capture
- Thermodynamic analysis and equilibrium based reactor modeling prove the advantage of moving bed reactor application
- Experimental study validates the modeling work
- Process simulation shows the mass and energy management in the SCL process
- CFD modeling is in progress

Acknowledgement

- UCR, USDOE
- Ohio Coal Development Office
 (OCDO) and The Ohio Air
 Quality Development Authority
 (OAQDA)
- US Air Force

Thanks